Второй тур дистанционного этапа XII олимпиады имени Леонарда Эйлера Решения задач

1. Каждую клетку доски 7×7 закрасили в один из девяти цветов. Известно, что у каждой клетки, не примыкающей к краю доски, есть соседи (по горизонтали, вертикали или диагонали) всех восьми цветов, не совпадающих с цветом этой клетки. Докажите, что клеток каждого из девяти цветов не меньше четырех. (По мотивам задачи Р. Женодарова)

<u>Решение</u>. Рассмотрим четыре квадрата 3×3, лежащие в углах доски. Центр каждого из них покрашен в какойто цвет и граничит с клетками, покрашенными во все остальные цвета. Поэтому в каждом из четырех квадратов есть клетки всех девяти цветов. Поскольку эти квадраты не пересекаются, клеток каждого цвета не менее 4.

2. Вася знает, что Петя задумал натуральное число, не большее 4. Вася может указать любое натуральное число или несколько чисел и спросить Петю, есть ли задуманное число среди них (например: «Верно ли, что задуманное число равно 2?» или «Верно ли, что задуманное число равно 2 или 3?»). Петя должен ответить «Да» или «Нет». Как Васе за 11 вопросов узнать задуманное число, если Петя в ответ может и соврать, но не больше трех раз? (И. Рубанов по фольклорным мотивам)

Решение. Пусть Вася сначала задает вопрос: «Задуманное число равно 3 или 4?» до тех пор, пока не получит четыре одинаковых ответа. Очевидно, эти четыре ответа могут быть только правдивыми. Если они положительны, то дальше Вася может задавать вопрос: «Это число 3?», пока не получит четыре одинаковых ответа. Если они положительны, задумано число 3, если отрицательны — число 4. Случай, когда верный ответ на первый вопрос отрицателен, разбирается аналогично (Вася может задавать вопрос: «Это число 2?»). Вася задал не более 11 вопросов, потому что он получил ровно 8 верных ответов, а неверных — не больше трёх.

3. Напомним, что факториалом n! натурального числа n называется произведение всех натуральных чисел от l до n включительно (например, l! = l, a $5! = l \cdot 2 \cdot 3 \cdot 4 \cdot 5$). Можно ли из чисел l!, 2!,..., 99!, l00! вычеркнуть одно так, чтобы произведение оставшихся оказалось кубом натурального числа? (И. Рубанов)

<u>Ответ</u>. Нельзя. <u>Решение</u>. Если произведение оставшихся факториалов — куб натурального числа, то для любого простого числа степень, в которой оно входит в это произведение, должна делиться на 3. Простое число 97 входит ровно в четыре факториала: от 97! до 100!, и в каждый — в первой степени. Поэтому вычеркнут должен быть один из этих четырех факториалов. Но тогда простое число 89 будет входить ровно в 11 факториалов: от 89! до 100!, исключая вычеркнутый. Противоречие.

4. Точки D и E лежат на продолжениях сторон AB и BC остроугольного треугольника ABC за точки B и C соответственно. Точки M и N — середины отрезков AE и DC. Докажите, что MN > AD/2. (И. Рубанов)

<u>Решение</u>. Пусть L и K — середины сторон AB и AC соответственно. Так как средние линии KL и KM треугольников ABC и ACE параллельны одной и той же прямой BC, а точки L и M лежат по разные стороны от прямой AC, точка K лежит на отрезке LM. Заметим, что $\angle NKM = \angle NKC + \angle CKM = \angle BAC + \angle BCA = 180° - \angle ABC > 90°$. Поэтому MN — самая длинная сторона в треугольнике MKN. В частности, MN > KN = AD/2, что и требовалось доказать.

5. На экране компьютера горит число, а на пульте компьютера есть две кнопки. Нажатие на одну из кнопок переводит число п, написанное на экране, в 2n-1, а на другую — в 2n+1. Пока оператор отсутствовал, хулиган Вася подкрался к пульту и произвёл сто несанкционированных нажатий на кнопки. Докажите, что по числу, которое теперь горит на экране, оператор (знающий, сколько раз Вася нажимал на кнопки и какое число было на экране до прихода Васи) сможет определить, в каком порядке Вася нажимал на кнопки, если число, горевшее вначале на экране: **а)** целое; **б)** произвольное. (А. Голованов)

<u>Решение</u>. а) Очевидно, после любого нажатия кнопки целое число на экране превращается в нечётное. Пусть после s-го нажатия кнопки на экране горит число m = 2k+1. Тогда после (s+1)-го нажатия на экране окажется либо число 2(2k+1)-1=4k+1, либо число 2(2k+1)+1=4k+3. Эти случаи легко различить, найдя остаток от деления числа на экране на 4. Таким образом, по числу после (s+1)-го нажатия мы можем найти как число после s-го нажатия, так и кнопку, которую Вася нажимал в (s+1)-ый раз. Проделав эту процедуру 99 раз, мы узнаем, в каком порядке Вася нажимал кнопки со второго по 100-ый раз, а также какое число получилось у него после первого нажатия. Зная его и исходное число на экране, мы выясним и то, какую кнопку Вася нажимал в первый раз.

б) Заведем у компьютера второй экран, на котором исходно горит число 0. Пусть на первом экране — число x. Легко видеть, что если после k нажатий на втором экране горит число s, то на первом — число 2^kx+s . Поэтому если вычесть из итогового числа на первом экране число $2^{100}x$, то мы получим число на втором экране, по которому мы восстановим последовательность нажатий кнопок как в пункте a.